Metamath Proof Explorer


Theorem msxms

Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion msxms MMetSpM∞MetSp

Proof

Step Hyp Ref Expression
1 eqid TopOpenM=TopOpenM
2 eqid BaseM=BaseM
3 eqid distMBaseM×BaseM=distMBaseM×BaseM
4 1 2 3 isms MMetSpM∞MetSpdistMBaseM×BaseMMetBaseM
5 4 simplbi MMetSpM∞MetSp