Metamath Proof Explorer


Theorem mul13d

Description: Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses mul13d.1 φA
mul13d.2 φB
mul13d.3 φC
Assertion mul13d φABC=CBA

Proof

Step Hyp Ref Expression
1 mul13d.1 φA
2 mul13d.2 φB
3 mul13d.3 φC
4 1 2 3 mul12d φABC=BAC
5 2 1 3 mulassd φBAC=BAC
6 2 1 mulcld φBA
7 6 3 mulcomd φBAC=CBA
8 4 5 7 3eqtr2d φABC=CBA