Description: Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mul13d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| mul13d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| mul13d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | mul13d | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐶 · ( 𝐵 · 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul13d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | mul13d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | mul13d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | 1 2 3 | mul12d | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) ) ) |
| 5 | 2 1 3 | mulassd | ⊢ ( 𝜑 → ( ( 𝐵 · 𝐴 ) · 𝐶 ) = ( 𝐵 · ( 𝐴 · 𝐶 ) ) ) |
| 6 | 2 1 | mulcld | ⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) ∈ ℂ ) |
| 7 | 6 3 | mulcomd | ⊢ ( 𝜑 → ( ( 𝐵 · 𝐴 ) · 𝐶 ) = ( 𝐶 · ( 𝐵 · 𝐴 ) ) ) |
| 8 | 4 5 7 | 3eqtr2d | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐶 · ( 𝐵 · 𝐴 ) ) ) |