Metamath Proof Explorer


Theorem mul2lt0llt0

Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Hypotheses mul2lt0.1 φA
mul2lt0.2 φB
mul2lt0.3 φAB<0
Assertion mul2lt0llt0 φA<00<B

Proof

Step Hyp Ref Expression
1 mul2lt0.1 φA
2 mul2lt0.2 φB
3 mul2lt0.3 φAB<0
4 1 recnd φA
5 2 recnd φB
6 4 5 mulcomd φAB=BA
7 6 3 eqbrtrrd φBA<0
8 2 1 7 mul2lt0rlt0 φA<00<B