Database REAL AND COMPLEX NUMBERS Order sets Positive reals (as a subset of complex numbers) mul2lt0llt0  
				
		 
		
			
		 
		Description:   If the result of a multiplication is strictly negative, then
         multiplicands are of different signs.  (Contributed by Thierry Arnoux , 19-Sep-2018) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mul2lt0.1    ⊢   φ   →   A  ∈   ℝ          
					 
					
						mul2lt0.2    ⊢   φ   →   B  ∈   ℝ          
					 
					
						mul2lt0.3    ⊢   φ   →    A  ⁢  B    <   0          
					 
				
					Assertion 
					mul2lt0llt0    ⊢    φ   ∧   A  <   0      →    0   <  B         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mul2lt0.1   ⊢   φ   →   A  ∈   ℝ          
						
							2 
								
							 
							mul2lt0.2   ⊢   φ   →   B  ∈   ℝ          
						
							3 
								
							 
							mul2lt0.3   ⊢   φ   →    A  ⁢  B    <   0          
						
							4 
								1 
							 
							recnd   ⊢   φ   →   A  ∈   ℂ          
						
							5 
								2 
							 
							recnd   ⊢   φ   →   B  ∈   ℂ          
						
							6 
								4  5 
							 
							mulcomd   ⊢   φ   →    A  ⁢  B    =   B  ⁢  A           
						
							7 
								6  3 
							 
							eqbrtrrd   ⊢   φ   →    B  ⁢  A    <   0          
						
							8 
								2  1  7 
							 
							mul2lt0rlt0   ⊢    φ   ∧   A  <   0      →    0   <  B