Database REAL AND COMPLEX NUMBERS Order sets Positive reals (as a subset of complex numbers) mul2lt0llt0  
				
		 
		
			
		 
		Description:   If the result of a multiplication is strictly negative, then
         multiplicands are of different signs.  (Contributed by Thierry Arnoux , 19-Sep-2018) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mul2lt0.1 ⊢  ( 𝜑   →  𝐴   ∈  ℝ )  
					
						mul2lt0.2 ⊢  ( 𝜑   →  𝐵   ∈  ℝ )  
					
						mul2lt0.3 ⊢  ( 𝜑   →  ( 𝐴   ·  𝐵  )  <  0 )  
				
					Assertion 
					mul2lt0llt0 ⊢   ( ( 𝜑   ∧  𝐴   <  0 )  →  0  <  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mul2lt0.1 ⊢  ( 𝜑   →  𝐴   ∈  ℝ )  
						
							2 
								
							 
							mul2lt0.2 ⊢  ( 𝜑   →  𝐵   ∈  ℝ )  
						
							3 
								
							 
							mul2lt0.3 ⊢  ( 𝜑   →  ( 𝐴   ·  𝐵  )  <  0 )  
						
							4 
								1 
							 
							recnd ⊢  ( 𝜑   →  𝐴   ∈  ℂ )  
						
							5 
								2 
							 
							recnd ⊢  ( 𝜑   →  𝐵   ∈  ℂ )  
						
							6 
								4  5 
							 
							mulcomd ⊢  ( 𝜑   →  ( 𝐴   ·  𝐵  )  =  ( 𝐵   ·  𝐴  ) )  
						
							7 
								6  3 
							 
							eqbrtrrd ⊢  ( 𝜑   →  ( 𝐵   ·  𝐴  )  <  0 )  
						
							8 
								2  1  7 
							 
							mul2lt0rlt0 ⊢  ( ( 𝜑   ∧  𝐴   <  0 )  →  0  <  𝐵  )