Metamath Proof Explorer


Theorem mul4r

Description: Rearrangement of 4 factors: swap the right factors in the factors of a product of two products. (Contributed by AV, 4-Mar-2023)

Ref Expression
Assertion mul4r ABCDABCD=ADCB

Proof

Step Hyp Ref Expression
1 mulcom CDCD=DC
2 1 adantl ABCDCD=DC
3 2 oveq2d ABCDABCD=ABDC
4 mul4 ABDCABDC=ADBC
5 4 ancom2s ABCDABDC=ADBC
6 simplr ABCDB
7 simprl ABCDC
8 6 7 mulcomd ABCDBC=CB
9 8 oveq2d ABCDADBC=ADCB
10 3 5 9 3eqtrd ABCDABCD=ADCB