Metamath Proof Explorer


Theorem mulassd

Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1 φA
addcld.2 φB
addassd.3 φC
Assertion mulassd φABC=ABC

Proof

Step Hyp Ref Expression
1 addcld.1 φA
2 addcld.2 φB
3 addassd.3 φC
4 mulass ABCABC=ABC
5 1 2 3 4 syl3anc φABC=ABC