Metamath Proof Explorer


Theorem mulcomd

Description: Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1 φ A
addcld.2 φ B
Assertion mulcomd φ A B = B A

Proof

Step Hyp Ref Expression
1 addcld.1 φ A
2 addcld.2 φ B
3 mulcom A B A B = B A
4 1 2 3 syl2anc φ A B = B A