Metamath Proof Explorer


Theorem mulneg2d

Description: Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses mulm1d.1 φ A
mulnegd.2 φ B
Assertion mulneg2d φ A B = A B

Proof

Step Hyp Ref Expression
1 mulm1d.1 φ A
2 mulnegd.2 φ B
3 mulneg2 A B A B = A B
4 1 2 3 syl2anc φ A B = A B