Metamath Proof Explorer


Theorem mulrcn

Description: The functionalization of the ring multiplication operation is a continuous function in a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j J=TopOpenR
mulrcn.t T=+𝑓mulGrpR
Assertion mulrcn RTopRingTJ×tJCnJ

Proof

Step Hyp Ref Expression
1 mulrcn.j J=TopOpenR
2 mulrcn.t T=+𝑓mulGrpR
3 eqid mulGrpR=mulGrpR
4 3 trgtmd RTopRingmulGrpRTopMnd
5 3 1 mgptopn J=TopOpenmulGrpR
6 5 2 tmdcn mulGrpRTopMndTJ×tJCnJ
7 4 6 syl RTopRingTJ×tJCnJ