Metamath Proof Explorer


Theorem muls12d

Description: Commutative/associative law for surreal multiplication. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses muls12d.1 φANo
muls12d.2 φBNo
muls12d.3 φCNo
Assertion muls12d φAsBsC=BsAsC

Proof

Step Hyp Ref Expression
1 muls12d.1 φANo
2 muls12d.2 φBNo
3 muls12d.3 φCNo
4 1 2 mulscomd φAsB=BsA
5 4 oveq1d φAsBsC=BsAsC
6 1 2 3 mulsassd φAsBsC=AsBsC
7 2 1 3 mulsassd φBsAsC=BsAsC
8 5 6 7 3eqtr3d φAsBsC=BsAsC