Metamath Proof Explorer


Theorem muval

Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion muval AμA=ifpp2A01p|pA

Proof

Step Hyp Ref Expression
1 breq2 x=Ap2xp2A
2 1 rexbidv x=App2xpp2A
3 breq2 x=ApxpA
4 3 rabbidv x=Ap|px=p|pA
5 4 fveq2d x=Ap|px=p|pA
6 5 oveq2d x=A1p|px=1p|pA
7 2 6 ifbieq2d x=Aifpp2x01p|px=ifpp2A01p|pA
8 df-mu μ=xifpp2x01p|px
9 c0ex 0V
10 ovex 1p|pAV
11 9 10 ifex ifpp2A01p|pAV
12 7 8 11 fvmpt AμA=ifpp2A01p|pA