Metamath Proof Explorer


Theorem mvrval

Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses mvrfval.v V=ImVarR
mvrfval.d D=h0I|h-1Fin
mvrfval.z 0˙=0R
mvrfval.o 1˙=1R
mvrfval.i φIW
mvrfval.r φRY
mvrval.x φXI
Assertion mvrval φVX=fDiff=yIify=X101˙0˙

Proof

Step Hyp Ref Expression
1 mvrfval.v V=ImVarR
2 mvrfval.d D=h0I|h-1Fin
3 mvrfval.z 0˙=0R
4 mvrfval.o 1˙=1R
5 mvrfval.i φIW
6 mvrfval.r φRY
7 mvrval.x φXI
8 1 2 3 4 5 6 mvrfval φV=xIfDiff=yIify=x101˙0˙
9 8 fveq1d φVX=xIfDiff=yIify=x101˙0˙X
10 eqeq2 x=Xy=xy=X
11 10 ifbid x=Xify=x10=ify=X10
12 11 mpteq2dv x=XyIify=x10=yIify=X10
13 12 eqeq2d x=Xf=yIify=x10f=yIify=X10
14 13 ifbid x=Xiff=yIify=x101˙0˙=iff=yIify=X101˙0˙
15 14 mpteq2dv x=XfDiff=yIify=x101˙0˙=fDiff=yIify=X101˙0˙
16 eqid xIfDiff=yIify=x101˙0˙=xIfDiff=yIify=x101˙0˙
17 ovex 0IV
18 2 17 rabex2 DV
19 18 mptex fDiff=yIify=X101˙0˙V
20 15 16 19 fvmpt XIxIfDiff=yIify=x101˙0˙X=fDiff=yIify=X101˙0˙
21 7 20 syl φxIfDiff=yIify=x101˙0˙X=fDiff=yIify=X101˙0˙
22 9 21 eqtrd φVX=fDiff=yIify=X101˙0˙