Metamath Proof Explorer


Theorem naddel12

Description: Natural addition to both sides of ordinal less-than. (Contributed by Scott Fenton, 7-Feb-2025)

Ref Expression
Assertion naddel12 Could not format assertion : No typesetting found for |- ( ( C e. On /\ D e. On ) -> ( ( A e. C /\ B e. D ) -> ( A +no B ) e. ( C +no D ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 simprr COnDOnACBDBD
2 onelon DOnBDBOn
3 2 ad2ant2l COnDOnACBDBOn
4 simplr COnDOnACBDDOn
5 onelon COnACAOn
6 5 ad2ant2r COnDOnACBDAOn
7 naddel2 Could not format ( ( B e. On /\ D e. On /\ A e. On ) -> ( B e. D <-> ( A +no B ) e. ( A +no D ) ) ) : No typesetting found for |- ( ( B e. On /\ D e. On /\ A e. On ) -> ( B e. D <-> ( A +no B ) e. ( A +no D ) ) ) with typecode |-
8 3 4 6 7 syl3anc Could not format ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( B e. D <-> ( A +no B ) e. ( A +no D ) ) ) : No typesetting found for |- ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( B e. D <-> ( A +no B ) e. ( A +no D ) ) ) with typecode |-
9 1 8 mpbid Could not format ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( A +no B ) e. ( A +no D ) ) : No typesetting found for |- ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( A +no B ) e. ( A +no D ) ) with typecode |-
10 simprl COnDOnACBDAC
11 simpll COnDOnACBDCOn
12 naddel1 Could not format ( ( A e. On /\ C e. On /\ D e. On ) -> ( A e. C <-> ( A +no D ) e. ( C +no D ) ) ) : No typesetting found for |- ( ( A e. On /\ C e. On /\ D e. On ) -> ( A e. C <-> ( A +no D ) e. ( C +no D ) ) ) with typecode |-
13 6 11 4 12 syl3anc Could not format ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( A e. C <-> ( A +no D ) e. ( C +no D ) ) ) : No typesetting found for |- ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( A e. C <-> ( A +no D ) e. ( C +no D ) ) ) with typecode |-
14 10 13 mpbid Could not format ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( A +no D ) e. ( C +no D ) ) : No typesetting found for |- ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( A +no D ) e. ( C +no D ) ) with typecode |-
15 naddcl Could not format ( ( C e. On /\ D e. On ) -> ( C +no D ) e. On ) : No typesetting found for |- ( ( C e. On /\ D e. On ) -> ( C +no D ) e. On ) with typecode |-
16 15 adantr Could not format ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( C +no D ) e. On ) : No typesetting found for |- ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( C +no D ) e. On ) with typecode |-
17 ontr1 Could not format ( ( C +no D ) e. On -> ( ( ( A +no B ) e. ( A +no D ) /\ ( A +no D ) e. ( C +no D ) ) -> ( A +no B ) e. ( C +no D ) ) ) : No typesetting found for |- ( ( C +no D ) e. On -> ( ( ( A +no B ) e. ( A +no D ) /\ ( A +no D ) e. ( C +no D ) ) -> ( A +no B ) e. ( C +no D ) ) ) with typecode |-
18 16 17 syl Could not format ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( ( ( A +no B ) e. ( A +no D ) /\ ( A +no D ) e. ( C +no D ) ) -> ( A +no B ) e. ( C +no D ) ) ) : No typesetting found for |- ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( ( ( A +no B ) e. ( A +no D ) /\ ( A +no D ) e. ( C +no D ) ) -> ( A +no B ) e. ( C +no D ) ) ) with typecode |-
19 9 14 18 mp2and Could not format ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( A +no B ) e. ( C +no D ) ) : No typesetting found for |- ( ( ( C e. On /\ D e. On ) /\ ( A e. C /\ B e. D ) ) -> ( A +no B ) e. ( C +no D ) ) with typecode |-
20 19 ex Could not format ( ( C e. On /\ D e. On ) -> ( ( A e. C /\ B e. D ) -> ( A +no B ) e. ( C +no D ) ) ) : No typesetting found for |- ( ( C e. On /\ D e. On ) -> ( ( A e. C /\ B e. D ) -> ( A +no B ) e. ( C +no D ) ) ) with typecode |-