Metamath Proof Explorer


Theorem nannan

Description: Nested alternative denials. (Contributed by Jeff Hoffman, 19-Nov-2007) (Proof shortened by Wolf Lammen, 26-Jun-2020)

Ref Expression
Assertion nannan φψχφψχ

Proof

Step Hyp Ref Expression
1 dfnan2 φψχφ¬ψχ
2 nanan ψχ¬ψχ
3 2 imbi2i φψχφ¬ψχ
4 1 3 bitr4i φψχφψχ