Metamath Proof Explorer


Theorem naryrcl

Description: Reverse closure for n-ary (endo)functions. (Contributed by AV, 14-May-2024)

Ref Expression
Hypothesis naryfval.i I = 0 ..^ N
Assertion naryrcl Could not format assertion : No typesetting found for |- ( F e. ( N -aryF X ) -> ( N e. NN0 /\ X e. _V ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 naryfval.i I = 0 ..^ N
2 df-naryf Could not format -aryF = ( x e. NN0 , n e. _V |-> ( n ^m ( n ^m ( 0 ..^ x ) ) ) ) : No typesetting found for |- -aryF = ( x e. NN0 , n e. _V |-> ( n ^m ( n ^m ( 0 ..^ x ) ) ) ) with typecode |-
3 2 elmpocl Could not format ( F e. ( N -aryF X ) -> ( N e. NN0 /\ X e. _V ) ) : No typesetting found for |- ( F e. ( N -aryF X ) -> ( N e. NN0 /\ X e. _V ) ) with typecode |-