Metamath Proof Explorer


Theorem natrcl

Description: Reverse closure for a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypothesis natrcl.1 N=CNatD
Assertion natrcl AFNGFCFuncDGCFuncD

Proof

Step Hyp Ref Expression
1 natrcl.1 N=CNatD
2 eqid BaseC=BaseC
3 eqid HomC=HomC
4 eqid HomD=HomD
5 eqid compD=compD
6 1 2 3 4 5 natfval N=fCFuncD,gCFuncD1stf/r1stg/saxBaseCrxHomDsx|xBaseCyBaseChxHomCyayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
7 6 elmpocl AFNGFCFuncDGCFuncD