| Step |
Hyp |
Ref |
Expression |
| 1 |
|
natfval.1 |
|
| 2 |
|
natfval.b |
|
| 3 |
|
natfval.h |
|
| 4 |
|
natfval.j |
|
| 5 |
|
natfval.o |
|
| 6 |
|
oveq12 |
|
| 7 |
|
simpl |
|
| 8 |
7
|
fveq2d |
|
| 9 |
8 2
|
eqtr4di |
|
| 10 |
9
|
ixpeq1d |
|
| 11 |
|
simpr |
|
| 12 |
11
|
fveq2d |
|
| 13 |
12 4
|
eqtr4di |
|
| 14 |
13
|
oveqd |
|
| 15 |
14
|
ixpeq2dv |
|
| 16 |
10 15
|
eqtrd |
|
| 17 |
7
|
fveq2d |
|
| 18 |
17 3
|
eqtr4di |
|
| 19 |
18
|
oveqd |
|
| 20 |
11
|
fveq2d |
|
| 21 |
20 5
|
eqtr4di |
|
| 22 |
21
|
oveqd |
|
| 23 |
22
|
oveqd |
|
| 24 |
21
|
oveqd |
|
| 25 |
24
|
oveqd |
|
| 26 |
23 25
|
eqeq12d |
|
| 27 |
19 26
|
raleqbidv |
|
| 28 |
9 27
|
raleqbidv |
|
| 29 |
9 28
|
raleqbidv |
|
| 30 |
16 29
|
rabeqbidv |
|
| 31 |
30
|
csbeq2dv |
|
| 32 |
31
|
csbeq2dv |
|
| 33 |
6 6 32
|
mpoeq123dv |
|
| 34 |
|
df-nat |
|
| 35 |
|
ovex |
|
| 36 |
35 35
|
mpoex |
|
| 37 |
33 34 36
|
ovmpoa |
|
| 38 |
34
|
mpondm0 |
|
| 39 |
|
funcrcl |
|
| 40 |
39
|
con3i |
|
| 41 |
40
|
eq0rdv |
|
| 42 |
41
|
olcd |
|
| 43 |
|
0mpo0 |
|
| 44 |
42 43
|
syl |
|
| 45 |
38 44
|
eqtr4d |
|
| 46 |
37 45
|
pm2.61i |
|
| 47 |
1 46
|
eqtri |
|