Metamath Proof Explorer


Theorem neg11ad

Description: The negatives of two complex numbers are equal iff they are equal. Deduction form of neg11 . Generalization of neg11d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 φA
neg11ad.2 φB
Assertion neg11ad φA=BA=B

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 neg11ad.2 φB
3 neg11 ABA=BA=B
4 1 2 3 syl2anc φA=BA=B