Metamath Proof Explorer


Theorem neglcm

Description: Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion neglcm MN- MlcmN=MlcmN

Proof

Step Hyp Ref Expression
1 lcmneg NMNlcm- M=NlcmM
2 1 ancoms MNNlcm- M=NlcmM
3 znegcl MM
4 lcmcom MN- MlcmN=Nlcm- M
5 3 4 sylan MN- MlcmN=Nlcm- M
6 lcmcom MNMlcmN=NlcmM
7 2 5 6 3eqtr4d MN- MlcmN=MlcmN