Metamath Proof Explorer


Theorem lcmabs

Description: The lcm of two integers is the same as that of their absolute values. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmabs MNMlcmN=MlcmN

Proof

Step Hyp Ref Expression
1 zre MM
2 zre NN
3 absor MM=MM=M
4 absor NN=NN=N
5 3 4 anim12i MNM=MM=MN=NN=N
6 1 2 5 syl2an MNM=MM=MN=NN=N
7 oveq12 M=MN=NMlcmN=MlcmN
8 7 a1i MNM=MN=NMlcmN=MlcmN
9 oveq12 M=MN=NMlcmN=- MlcmN
10 neglcm MN- MlcmN=MlcmN
11 9 10 sylan9eqr MNM=MN=NMlcmN=MlcmN
12 11 ex MNM=MN=NMlcmN=MlcmN
13 oveq12 M=MN=NMlcmN=Mlcm- N
14 lcmneg MNMlcm- N=MlcmN
15 13 14 sylan9eqr MNM=MN=NMlcmN=MlcmN
16 15 ex MNM=MN=NMlcmN=MlcmN
17 oveq12 M=MN=NMlcmN=- Mlcm- N
18 znegcl MM
19 lcmneg MN- Mlcm- N=- MlcmN
20 18 19 sylan MN- Mlcm- N=- MlcmN
21 20 10 eqtrd MN- Mlcm- N=MlcmN
22 17 21 sylan9eqr MNM=MN=NMlcmN=MlcmN
23 22 ex MNM=MN=NMlcmN=MlcmN
24 8 12 16 23 ccased MNM=MM=MN=NN=NMlcmN=MlcmN
25 6 24 mpd MNMlcmN=MlcmN