| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
| 2 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 3 |
|
absor |
|- ( M e. RR -> ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) ) |
| 4 |
|
absor |
|- ( N e. RR -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
| 5 |
3 4
|
anim12i |
|- ( ( M e. RR /\ N e. RR ) -> ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) ) |
| 6 |
1 2 5
|
syl2an |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) ) |
| 7 |
|
oveq12 |
|- ( ( ( abs ` M ) = M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
| 8 |
7
|
a1i |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) |
| 9 |
|
oveq12 |
|- ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( -u M lcm N ) ) |
| 10 |
|
neglcm |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm N ) = ( M lcm N ) ) |
| 11 |
9 10
|
sylan9eqr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
| 12 |
11
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) |
| 13 |
|
oveq12 |
|- ( ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm -u N ) ) |
| 14 |
|
lcmneg |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( M lcm N ) ) |
| 15 |
13 14
|
sylan9eqr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
| 16 |
15
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) |
| 17 |
|
oveq12 |
|- ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( -u M lcm -u N ) ) |
| 18 |
|
znegcl |
|- ( M e. ZZ -> -u M e. ZZ ) |
| 19 |
|
lcmneg |
|- ( ( -u M e. ZZ /\ N e. ZZ ) -> ( -u M lcm -u N ) = ( -u M lcm N ) ) |
| 20 |
18 19
|
sylan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm -u N ) = ( -u M lcm N ) ) |
| 21 |
20 10
|
eqtrd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm -u N ) = ( M lcm N ) ) |
| 22 |
17 21
|
sylan9eqr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
| 23 |
22
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) |
| 24 |
8 12 16 23
|
ccased |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) ) |
| 25 |
6 24
|
mpd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |