| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcm0val |
|- ( N e. ZZ -> ( N lcm 0 ) = 0 ) |
| 2 |
|
znegcl |
|- ( N e. ZZ -> -u N e. ZZ ) |
| 3 |
|
lcm0val |
|- ( -u N e. ZZ -> ( -u N lcm 0 ) = 0 ) |
| 4 |
2 3
|
syl |
|- ( N e. ZZ -> ( -u N lcm 0 ) = 0 ) |
| 5 |
1 4
|
eqtr4d |
|- ( N e. ZZ -> ( N lcm 0 ) = ( -u N lcm 0 ) ) |
| 6 |
5
|
ad2antlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( N lcm 0 ) = ( -u N lcm 0 ) ) |
| 7 |
|
oveq2 |
|- ( M = 0 -> ( N lcm M ) = ( N lcm 0 ) ) |
| 8 |
|
oveq2 |
|- ( M = 0 -> ( -u N lcm M ) = ( -u N lcm 0 ) ) |
| 9 |
7 8
|
eqeq12d |
|- ( M = 0 -> ( ( N lcm M ) = ( -u N lcm M ) <-> ( N lcm 0 ) = ( -u N lcm 0 ) ) ) |
| 10 |
9
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( N lcm M ) = ( -u N lcm M ) <-> ( N lcm 0 ) = ( -u N lcm 0 ) ) ) |
| 11 |
6 10
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( N lcm M ) = ( -u N lcm M ) ) |
| 12 |
|
lcmcom |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) |
| 13 |
|
lcmcom |
|- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) = ( -u N lcm M ) ) |
| 14 |
2 13
|
sylan2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( -u N lcm M ) ) |
| 15 |
12 14
|
eqeq12d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( N lcm M ) = ( -u N lcm M ) ) ) |
| 16 |
15
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( N lcm M ) = ( -u N lcm M ) ) ) |
| 17 |
11 16
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = ( M lcm -u N ) ) |
| 18 |
|
neg0 |
|- -u 0 = 0 |
| 19 |
18
|
oveq2i |
|- ( M lcm -u 0 ) = ( M lcm 0 ) |
| 20 |
19
|
eqcomi |
|- ( M lcm 0 ) = ( M lcm -u 0 ) |
| 21 |
|
oveq2 |
|- ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) |
| 22 |
|
negeq |
|- ( N = 0 -> -u N = -u 0 ) |
| 23 |
22
|
oveq2d |
|- ( N = 0 -> ( M lcm -u N ) = ( M lcm -u 0 ) ) |
| 24 |
20 21 23
|
3eqtr4a |
|- ( N = 0 -> ( M lcm N ) = ( M lcm -u N ) ) |
| 25 |
24
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = ( M lcm -u N ) ) |
| 26 |
17 25
|
jaodan |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = ( M lcm -u N ) ) |
| 27 |
|
dvdslcm |
|- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) |
| 28 |
2 27
|
sylan2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) |
| 29 |
|
simpr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
| 30 |
|
lcmcl |
|- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) e. NN0 ) |
| 31 |
2 30
|
sylan2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. NN0 ) |
| 32 |
31
|
nn0zd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. ZZ ) |
| 33 |
|
negdvdsb |
|- ( ( N e. ZZ /\ ( M lcm -u N ) e. ZZ ) -> ( N || ( M lcm -u N ) <-> -u N || ( M lcm -u N ) ) ) |
| 34 |
29 32 33
|
syl2anc |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N || ( M lcm -u N ) <-> -u N || ( M lcm -u N ) ) ) |
| 35 |
34
|
anbi2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) <-> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) ) |
| 36 |
28 35
|
mpbird |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) ) |
| 37 |
36
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) ) |
| 38 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 39 |
38
|
negeq0d |
|- ( N e. ZZ -> ( N = 0 <-> -u N = 0 ) ) |
| 40 |
39
|
orbi2d |
|- ( N e. ZZ -> ( ( M = 0 \/ N = 0 ) <-> ( M = 0 \/ -u N = 0 ) ) ) |
| 41 |
40
|
notbid |
|- ( N e. ZZ -> ( -. ( M = 0 \/ N = 0 ) <-> -. ( M = 0 \/ -u N = 0 ) ) ) |
| 42 |
41
|
biimpa |
|- ( ( N e. ZZ /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ -u N = 0 ) ) |
| 43 |
42
|
adantll |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ -u N = 0 ) ) |
| 44 |
|
lcmn0cl |
|- ( ( ( M e. ZZ /\ -u N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( M lcm -u N ) e. NN ) |
| 45 |
2 44
|
sylanl2 |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( M lcm -u N ) e. NN ) |
| 46 |
43 45
|
syldan |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm -u N ) e. NN ) |
| 47 |
|
simpl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M e. ZZ /\ N e. ZZ ) ) |
| 48 |
|
3anass |
|- ( ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) <-> ( ( M lcm -u N ) e. NN /\ ( M e. ZZ /\ N e. ZZ ) ) ) |
| 49 |
46 47 48
|
sylanbrc |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) ) |
| 50 |
|
simpr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ N = 0 ) ) |
| 51 |
|
lcmledvds |
|- ( ( ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) ) |
| 52 |
49 50 51
|
syl2anc |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) ) |
| 53 |
37 52
|
mpd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) |
| 54 |
|
dvdslcm |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
| 55 |
54
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
| 56 |
|
simplr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> N e. ZZ ) |
| 57 |
|
lcmn0cl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |
| 58 |
57
|
nnzd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. ZZ ) |
| 59 |
|
negdvdsb |
|- ( ( N e. ZZ /\ ( M lcm N ) e. ZZ ) -> ( N || ( M lcm N ) <-> -u N || ( M lcm N ) ) ) |
| 60 |
56 58 59
|
syl2anc |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( N || ( M lcm N ) <-> -u N || ( M lcm N ) ) ) |
| 61 |
60
|
anbi2d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ N || ( M lcm N ) ) <-> ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) ) ) |
| 62 |
|
lcmledvds |
|- ( ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ -u N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) |
| 63 |
62
|
ex |
|- ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ -u N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
| 64 |
2 63
|
syl3an3 |
|- ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
| 65 |
64
|
3expib |
|- ( ( M lcm N ) e. NN -> ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) ) |
| 66 |
57 47 43 65
|
syl3c |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) |
| 67 |
61 66
|
sylbid |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) |
| 68 |
55 67
|
mpd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) |
| 69 |
|
lcmcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
| 70 |
69
|
nn0red |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. RR ) |
| 71 |
30
|
nn0red |
|- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) e. RR ) |
| 72 |
2 71
|
sylan2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. RR ) |
| 73 |
70 72
|
letri3d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( ( M lcm N ) <_ ( M lcm -u N ) /\ ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
| 74 |
73
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( ( M lcm N ) <_ ( M lcm -u N ) /\ ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
| 75 |
53 68 74
|
mpbir2and |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = ( M lcm -u N ) ) |
| 76 |
26 75
|
pm2.61dan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( M lcm -u N ) ) |
| 77 |
76
|
eqcomd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( M lcm N ) ) |