| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcm0val |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = 0 ) |
| 2 |
|
znegcl |
⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) |
| 3 |
|
lcm0val |
⊢ ( - 𝑁 ∈ ℤ → ( - 𝑁 lcm 0 ) = 0 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑁 ∈ ℤ → ( - 𝑁 lcm 0 ) = 0 ) |
| 5 |
1 4
|
eqtr4d |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) |
| 6 |
5
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑀 = 0 → ( 𝑁 lcm 𝑀 ) = ( 𝑁 lcm 0 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑀 = 0 → ( - 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 0 ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑀 = 0 → ( ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ↔ ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ↔ ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) ) |
| 11 |
6 10
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ) |
| 12 |
|
lcmcom |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = ( 𝑁 lcm 𝑀 ) ) |
| 13 |
|
lcmcom |
⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( - 𝑁 lcm 𝑀 ) ) |
| 14 |
2 13
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( - 𝑁 lcm 𝑀 ) ) |
| 15 |
12 14
|
eqeq12d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ) ) |
| 17 |
11 16
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 18 |
|
neg0 |
⊢ - 0 = 0 |
| 19 |
18
|
oveq2i |
⊢ ( 𝑀 lcm - 0 ) = ( 𝑀 lcm 0 ) |
| 20 |
19
|
eqcomi |
⊢ ( 𝑀 lcm 0 ) = ( 𝑀 lcm - 0 ) |
| 21 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm 0 ) ) |
| 22 |
|
negeq |
⊢ ( 𝑁 = 0 → - 𝑁 = - 0 ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑁 = 0 → ( 𝑀 lcm - 𝑁 ) = ( 𝑀 lcm - 0 ) ) |
| 24 |
20 21 23
|
3eqtr4a |
⊢ ( 𝑁 = 0 → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 26 |
17 25
|
jaodan |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 27 |
|
dvdslcm |
⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
| 28 |
2 27
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 30 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ0 ) |
| 31 |
2 30
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ0 ) |
| 32 |
31
|
nn0zd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℤ ) |
| 33 |
|
negdvdsb |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 lcm - 𝑁 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
| 34 |
29 32 33
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
| 35 |
34
|
anbi2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ↔ ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) ) |
| 36 |
28 35
|
mpbird |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
| 38 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
| 39 |
38
|
negeq0d |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 = 0 ↔ - 𝑁 = 0 ) ) |
| 40 |
39
|
orbi2d |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) ) |
| 41 |
40
|
notbid |
⊢ ( 𝑁 ∈ ℤ → ( ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) ) |
| 42 |
41
|
biimpa |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) |
| 43 |
42
|
adantll |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) |
| 44 |
|
lcmn0cl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ ) |
| 45 |
2 44
|
sylanl2 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ ) |
| 46 |
43 45
|
syldan |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ ) |
| 47 |
|
simpl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 48 |
|
3anass |
⊢ ( ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ↔ ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ) |
| 49 |
46 47 48
|
sylanbrc |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 50 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) |
| 51 |
|
lcmledvds |
⊢ ( ( ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ) ) |
| 52 |
49 50 51
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ) ) |
| 53 |
37 52
|
mpd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ) |
| 54 |
|
dvdslcm |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 55 |
54
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 56 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → 𝑁 ∈ ℤ ) |
| 57 |
|
lcmn0cl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ ) |
| 58 |
57
|
nnzd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℤ ) |
| 59 |
|
negdvdsb |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 lcm 𝑁 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 60 |
56 58 59
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 61 |
60
|
anbi2d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ↔ ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 62 |
|
lcmledvds |
⊢ ( ( ( ( 𝑀 lcm 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) |
| 63 |
62
|
ex |
⊢ ( ( ( 𝑀 lcm 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 64 |
2 63
|
syl3an3 |
⊢ ( ( ( 𝑀 lcm 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 65 |
64
|
3expib |
⊢ ( ( 𝑀 lcm 𝑁 ) ∈ ℕ → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) ) |
| 66 |
57 47 43 65
|
syl3c |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) |
| 67 |
61 66
|
sylbid |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) |
| 68 |
55 67
|
mpd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) |
| 69 |
|
lcmcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
| 70 |
69
|
nn0red |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℝ ) |
| 71 |
30
|
nn0red |
⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℝ ) |
| 72 |
2 71
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℝ ) |
| 73 |
70 72
|
letri3d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ∧ ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 74 |
73
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ∧ ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 75 |
53 68 74
|
mpbir2and |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 76 |
26 75
|
pm2.61dan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 77 |
76
|
eqcomd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( 𝑀 lcm 𝑁 ) ) |