| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvds0 |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∥ 0 ) |
| 2 |
1
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → 𝑀 ∥ 0 ) |
| 3 |
|
oveq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 lcm 𝑁 ) = ( 0 lcm 𝑁 ) ) |
| 4 |
|
0z |
⊢ 0 ∈ ℤ |
| 5 |
|
lcmcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 𝑁 lcm 0 ) = ( 0 lcm 𝑁 ) ) |
| 6 |
4 5
|
mpan2 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = ( 0 lcm 𝑁 ) ) |
| 7 |
|
lcm0val |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = 0 ) |
| 8 |
6 7
|
eqtr3d |
⊢ ( 𝑁 ∈ ℤ → ( 0 lcm 𝑁 ) = 0 ) |
| 9 |
3 8
|
sylan9eqr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 10 |
9
|
adantll |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 11 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm 0 ) ) |
| 12 |
|
lcm0val |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 0 ) = 0 ) |
| 13 |
11 12
|
sylan9eqr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 14 |
13
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 15 |
10 14
|
jaodan |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 16 |
2 15
|
breqtrrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 17 |
|
dvds0 |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 0 ) |
| 18 |
17
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → 𝑁 ∥ 0 ) |
| 19 |
18 15
|
breqtrrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 20 |
16 19
|
jca |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 21 |
|
lcmcllem |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) |
| 22 |
|
lcmn0cl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ ) |
| 23 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑀 lcm 𝑁 ) → ( 𝑀 ∥ 𝑛 ↔ 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 24 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑀 lcm 𝑁 ) → ( 𝑁 ∥ 𝑛 ↔ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 25 |
23 24
|
anbi12d |
⊢ ( 𝑛 = ( 𝑀 lcm 𝑁 ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ↔ ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 26 |
25
|
elrab3 |
⊢ ( ( 𝑀 lcm 𝑁 ) ∈ ℕ → ( ( 𝑀 lcm 𝑁 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ↔ ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 27 |
22 26
|
syl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 lcm 𝑁 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ↔ ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 28 |
21 27
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 29 |
20 28
|
pm2.61dan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |