| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 2 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 3 |
|
absor |
⊢ ( 𝑀 ∈ ℝ → ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ) |
| 4 |
|
absor |
⊢ ( 𝑁 ∈ ℝ → ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) |
| 5 |
3 4
|
anim12i |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ∧ ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) ) |
| 6 |
1 2 5
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ∧ ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) ) |
| 7 |
|
oveq12 |
⊢ ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| 8 |
7
|
a1i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) ) |
| 9 |
|
oveq12 |
⊢ ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( - 𝑀 lcm 𝑁 ) ) |
| 10 |
|
neglcm |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 lcm 𝑁 ) = ( 𝑀 lcm 𝑁 ) ) |
| 11 |
9 10
|
sylan9eqr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| 12 |
11
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) ) |
| 13 |
|
oveq12 |
⊢ ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm - 𝑁 ) ) |
| 14 |
|
lcmneg |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( 𝑀 lcm 𝑁 ) ) |
| 15 |
13 14
|
sylan9eqr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| 16 |
15
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) ) |
| 17 |
|
oveq12 |
⊢ ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( - 𝑀 lcm - 𝑁 ) ) |
| 18 |
|
znegcl |
⊢ ( 𝑀 ∈ ℤ → - 𝑀 ∈ ℤ ) |
| 19 |
|
lcmneg |
⊢ ( ( - 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 lcm - 𝑁 ) = ( - 𝑀 lcm 𝑁 ) ) |
| 20 |
18 19
|
sylan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 lcm - 𝑁 ) = ( - 𝑀 lcm 𝑁 ) ) |
| 21 |
20 10
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 lcm - 𝑁 ) = ( 𝑀 lcm 𝑁 ) ) |
| 22 |
17 21
|
sylan9eqr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| 23 |
22
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) ) |
| 24 |
8 12 16 23
|
ccased |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ∧ ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) ) |
| 25 |
6 24
|
mpd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |