| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnmulcl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℕ ) |
| 2 |
1
|
nnred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℝ ) |
| 3 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 5 |
4
|
zred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 6 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 8 |
7
|
zred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 9 |
|
0red |
⊢ ( 𝑀 ∈ ℕ → 0 ∈ ℝ ) |
| 10 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
| 11 |
|
nngt0 |
⊢ ( 𝑀 ∈ ℕ → 0 < 𝑀 ) |
| 12 |
9 10 11
|
ltled |
⊢ ( 𝑀 ∈ ℕ → 0 ≤ 𝑀 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑀 ) |
| 14 |
|
0red |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) |
| 15 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 16 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
| 17 |
14 15 16
|
ltled |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑁 ) |
| 19 |
5 8 13 18
|
mulge0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ ( 𝑀 · 𝑁 ) ) |
| 20 |
2 19
|
absidd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) |
| 21 |
3 6
|
anim12i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 22 |
|
nnne0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ≠ 0 ) |
| 23 |
22
|
neneqd |
⊢ ( 𝑀 ∈ ℕ → ¬ 𝑀 = 0 ) |
| 24 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 25 |
24
|
neneqd |
⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
| 26 |
23 25
|
anim12i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0 ) ) |
| 27 |
|
ioran |
⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ( ¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0 ) ) |
| 28 |
26 27
|
sylibr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) |
| 29 |
|
lcmn0val |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } , ℝ , < ) ) |
| 30 |
21 28 29
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } , ℝ , < ) ) |
| 31 |
|
ltso |
⊢ < Or ℝ |
| 32 |
31
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → < Or ℝ ) |
| 33 |
|
gcddvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 34 |
33
|
simpld |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
| 35 |
|
gcdcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) |
| 36 |
35
|
nn0zd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
| 37 |
|
dvdsmultr1 |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 38 |
37
|
3expb |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 39 |
36 38
|
mpancom |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 40 |
34 39
|
mpd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 41 |
21 40
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 42 |
|
gcdnncl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ ) |
| 43 |
|
nndivdvds |
⊢ ( ( ( 𝑀 · 𝑁 ) ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ↔ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) ) |
| 44 |
1 42 43
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ↔ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) ) |
| 45 |
41 44
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) |
| 46 |
45
|
nnred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℝ ) |
| 47 |
|
breq2 |
⊢ ( 𝑥 = ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) → ( 𝑀 ∥ 𝑥 ↔ 𝑀 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 48 |
|
breq2 |
⊢ ( 𝑥 = ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) → ( 𝑁 ∥ 𝑥 ↔ 𝑁 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 49 |
47 48
|
anbi12d |
⊢ ( 𝑥 = ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) → ( ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) ↔ ( 𝑀 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∧ 𝑁 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ) ) |
| 50 |
33
|
simprd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 51 |
21 50
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 52 |
21 36
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
| 53 |
42
|
nnne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ≠ 0 ) |
| 54 |
|
dvdsval2 |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
| 55 |
52 53 7 54
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
| 56 |
51 55
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 57 |
|
dvdsmul1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) → 𝑀 ∥ ( 𝑀 · ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 58 |
4 56 57
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( 𝑀 · ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 59 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 61 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 63 |
42
|
nncnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℂ ) |
| 64 |
60 62 63 53
|
divassd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 · ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 65 |
58 64
|
breqtrrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) |
| 66 |
21 34
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
| 67 |
|
dvdsval2 |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ≠ 0 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ↔ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
| 68 |
52 53 4 67
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ↔ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
| 69 |
66 68
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 70 |
|
dvdsmul1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) → 𝑁 ∥ ( 𝑁 · ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 71 |
7 69 70
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∥ ( 𝑁 · ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 72 |
60 62
|
mulcomd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 73 |
72
|
oveq1d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( ( 𝑁 · 𝑀 ) / ( 𝑀 gcd 𝑁 ) ) ) |
| 74 |
62 60 63 53
|
divassd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 · 𝑀 ) / ( 𝑀 gcd 𝑁 ) ) = ( 𝑁 · ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 75 |
73 74
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( 𝑁 · ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 76 |
71 75
|
breqtrrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) |
| 77 |
65 76
|
jca |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∧ 𝑁 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 78 |
49 45 77
|
elrabd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ) |
| 79 |
46
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℝ ) |
| 80 |
|
elrabi |
⊢ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } → 𝑛 ∈ ℕ ) |
| 81 |
80
|
nnred |
⊢ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } → 𝑛 ∈ ℝ ) |
| 82 |
81
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ) → 𝑛 ∈ ℝ ) |
| 83 |
|
breq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝑀 ∥ 𝑥 ↔ 𝑀 ∥ 𝑛 ) ) |
| 84 |
|
breq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝑁 ∥ 𝑥 ↔ 𝑁 ∥ 𝑛 ) ) |
| 85 |
83 84
|
anbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) ↔ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) |
| 86 |
85
|
elrab |
⊢ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ↔ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) |
| 87 |
|
bezout |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) |
| 88 |
21 87
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) |
| 89 |
88
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) |
| 90 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 91 |
90
|
ad2antlr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑛 ∈ ℂ ) |
| 92 |
1
|
nncnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℂ ) |
| 93 |
92
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 · 𝑁 ) ∈ ℂ ) |
| 94 |
63
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 gcd 𝑁 ) ∈ ℂ ) |
| 95 |
60
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑀 ∈ ℂ ) |
| 96 |
61
|
ad3antlr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑁 ∈ ℂ ) |
| 97 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑀 ≠ 0 ) |
| 98 |
24
|
ad3antlr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑁 ≠ 0 ) |
| 99 |
95 96 97 98
|
mulne0d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 · 𝑁 ) ≠ 0 ) |
| 100 |
53
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 gcd 𝑁 ) ≠ 0 ) |
| 101 |
91 93 94 99 100
|
divdiv2d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( 𝑛 · ( 𝑀 gcd 𝑁 ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 102 |
101
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( 𝑛 · ( 𝑀 gcd 𝑁 ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 103 |
|
oveq2 |
⊢ ( ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ( 𝑛 · ( 𝑀 gcd 𝑁 ) ) = ( 𝑛 · ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) ) |
| 104 |
103
|
oveq1d |
⊢ ( ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ( ( 𝑛 · ( 𝑀 gcd 𝑁 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑛 · ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 105 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
| 106 |
105
|
ad2antrl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑥 ∈ ℂ ) |
| 107 |
95 106
|
mulcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 · 𝑥 ) ∈ ℂ ) |
| 108 |
|
zcn |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) |
| 109 |
108
|
ad2antll |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑦 ∈ ℂ ) |
| 110 |
96 109
|
mulcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑁 · 𝑦 ) ∈ ℂ ) |
| 111 |
91 107 110
|
adddid |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) = ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) + ( 𝑛 · ( 𝑁 · 𝑦 ) ) ) ) |
| 112 |
111
|
oveq1d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) / ( 𝑀 · 𝑁 ) ) = ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) + ( 𝑛 · ( 𝑁 · 𝑦 ) ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 113 |
91 107
|
mulcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · ( 𝑀 · 𝑥 ) ) ∈ ℂ ) |
| 114 |
91 110
|
mulcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · ( 𝑁 · 𝑦 ) ) ∈ ℂ ) |
| 115 |
113 114 93 99
|
divdird |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) + ( 𝑛 · ( 𝑁 · 𝑦 ) ) ) / ( 𝑀 · 𝑁 ) ) = ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) + ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) ) |
| 116 |
112 115
|
eqtrd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) / ( 𝑀 · 𝑁 ) ) = ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) + ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) ) |
| 117 |
104 116
|
sylan9eqr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( ( 𝑛 · ( 𝑀 gcd 𝑁 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) + ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) ) |
| 118 |
91 95 106
|
mul12d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · ( 𝑀 · 𝑥 ) ) = ( 𝑀 · ( 𝑛 · 𝑥 ) ) ) |
| 119 |
118
|
oveq1d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑀 · ( 𝑛 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 120 |
91 106
|
mulcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · 𝑥 ) ∈ ℂ ) |
| 121 |
120 96 95 98 97
|
divcan5d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 · ( 𝑛 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑛 · 𝑥 ) / 𝑁 ) ) |
| 122 |
119 121
|
eqtrd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑛 · 𝑥 ) / 𝑁 ) ) |
| 123 |
91 96 109
|
mul12d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · ( 𝑁 · 𝑦 ) ) = ( 𝑁 · ( 𝑛 · 𝑦 ) ) ) |
| 124 |
123
|
oveq1d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑁 · ( 𝑛 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 125 |
72
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 126 |
125
|
oveq2d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑁 · ( 𝑛 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑁 · ( 𝑛 · 𝑦 ) ) / ( 𝑁 · 𝑀 ) ) ) |
| 127 |
91 109
|
mulcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · 𝑦 ) ∈ ℂ ) |
| 128 |
127 95 96 97 98
|
divcan5d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑁 · ( 𝑛 · 𝑦 ) ) / ( 𝑁 · 𝑀 ) ) = ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) |
| 129 |
124 126 128
|
3eqtrd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) |
| 130 |
122 129
|
oveq12d |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) + ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) |
| 131 |
130
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) + ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) |
| 132 |
102 117 131
|
3eqtrd |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) |
| 133 |
132
|
ex |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) ) |
| 134 |
133
|
adantlrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) ) |
| 135 |
134
|
imp |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) |
| 136 |
6
|
ad3antlr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) |
| 137 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
| 138 |
137
|
ad2antlr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑛 ∈ ℤ ) |
| 139 |
|
simprl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑥 ∈ ℤ ) |
| 140 |
|
dvdsmultr1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑁 ∥ 𝑛 → 𝑁 ∥ ( 𝑛 · 𝑥 ) ) ) |
| 141 |
136 138 139 140
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑛 → 𝑁 ∥ ( 𝑛 · 𝑥 ) ) ) |
| 142 |
138 139
|
zmulcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · 𝑥 ) ∈ ℤ ) |
| 143 |
|
dvdsval2 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ ( 𝑛 · 𝑥 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝑛 · 𝑥 ) ↔ ( ( 𝑛 · 𝑥 ) / 𝑁 ) ∈ ℤ ) ) |
| 144 |
136 98 142 143
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑁 ∥ ( 𝑛 · 𝑥 ) ↔ ( ( 𝑛 · 𝑥 ) / 𝑁 ) ∈ ℤ ) ) |
| 145 |
141 144
|
sylibd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑛 → ( ( 𝑛 · 𝑥 ) / 𝑁 ) ∈ ℤ ) ) |
| 146 |
145
|
adantld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( ( 𝑛 · 𝑥 ) / 𝑁 ) ∈ ℤ ) ) |
| 147 |
146
|
3impia |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) → ( ( 𝑛 · 𝑥 ) / 𝑁 ) ∈ ℤ ) |
| 148 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑀 ∈ ℤ ) |
| 149 |
|
simprr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑦 ∈ ℤ ) |
| 150 |
|
dvdsmultr1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑀 ∥ 𝑛 → 𝑀 ∥ ( 𝑛 · 𝑦 ) ) ) |
| 151 |
148 138 149 150
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑛 → 𝑀 ∥ ( 𝑛 · 𝑦 ) ) ) |
| 152 |
138 149
|
zmulcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · 𝑦 ) ∈ ℤ ) |
| 153 |
|
dvdsval2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ( 𝑛 · 𝑦 ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝑛 · 𝑦 ) ↔ ( ( 𝑛 · 𝑦 ) / 𝑀 ) ∈ ℤ ) ) |
| 154 |
148 97 152 153
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 ∥ ( 𝑛 · 𝑦 ) ↔ ( ( 𝑛 · 𝑦 ) / 𝑀 ) ∈ ℤ ) ) |
| 155 |
151 154
|
sylibd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑛 → ( ( 𝑛 · 𝑦 ) / 𝑀 ) ∈ ℤ ) ) |
| 156 |
155
|
adantrd |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( ( 𝑛 · 𝑦 ) / 𝑀 ) ∈ ℤ ) ) |
| 157 |
156
|
3impia |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) → ( ( 𝑛 · 𝑦 ) / 𝑀 ) ∈ ℤ ) |
| 158 |
147 157
|
zaddcld |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) |
| 159 |
158
|
3expia |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) ) |
| 160 |
159
|
an32s |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) ) |
| 161 |
160
|
impr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) |
| 162 |
161
|
an32s |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) |
| 163 |
162
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) |
| 164 |
135 163
|
eqeltrd |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ∈ ℤ ) |
| 165 |
45
|
nnzd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 166 |
165
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 167 |
1
|
nnne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ≠ 0 ) |
| 168 |
92 63 167 53
|
divne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≠ 0 ) |
| 169 |
168
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≠ 0 ) |
| 170 |
138
|
adantlrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑛 ∈ ℤ ) |
| 171 |
|
dvdsval2 |
⊢ ( ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ∧ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≠ 0 ∧ 𝑛 ∈ ℤ ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ∈ ℤ ) ) |
| 172 |
166 169 170 171
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ∈ ℤ ) ) |
| 173 |
172
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ∈ ℤ ) ) |
| 174 |
164 173
|
mpbird |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 175 |
174
|
ex |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) ) |
| 176 |
175
|
reximdvva |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) ) |
| 177 |
89 176
|
mpd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 178 |
|
1z |
⊢ 1 ∈ ℤ |
| 179 |
|
ne0i |
⊢ ( 1 ∈ ℤ → ℤ ≠ ∅ ) |
| 180 |
|
r19.9rzv |
⊢ ( ℤ ≠ ∅ → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) ) |
| 181 |
178 179 180
|
mp2b |
⊢ ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 182 |
|
r19.9rzv |
⊢ ( ℤ ≠ ∅ → ( ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) ) |
| 183 |
178 179 182
|
mp2b |
⊢ ( ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 184 |
181 183
|
bitri |
⊢ ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 185 |
177 184
|
sylibr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 186 |
165
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 187 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → 𝑛 ∈ ℕ ) |
| 188 |
|
dvdsle |
⊢ ( ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≤ 𝑛 ) ) |
| 189 |
186 187 188
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≤ 𝑛 ) ) |
| 190 |
185 189
|
mpd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≤ 𝑛 ) |
| 191 |
86 190
|
sylan2b |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≤ 𝑛 ) |
| 192 |
79 82 191
|
lensymd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ) → ¬ 𝑛 < ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) |
| 193 |
32 46 78 192
|
infmin |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → inf ( { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } , ℝ , < ) = ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) |
| 194 |
30 193
|
eqtr2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| 195 |
194 45
|
eqeltrrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ ) |
| 196 |
195
|
nncnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 lcm 𝑁 ) ∈ ℂ ) |
| 197 |
92 196 63 53
|
divmul3d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ↔ ( 𝑀 · 𝑁 ) = ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) ) ) |
| 198 |
194 197
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) = ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) ) |
| 199 |
20 198
|
eqtr2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
| 200 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) → 𝐾 ∈ ℕ ) |
| 201 |
|
eleq1 |
⊢ ( 𝑛 = 𝐾 → ( 𝑛 ∈ ℕ ↔ 𝐾 ∈ ℕ ) ) |
| 202 |
|
breq2 |
⊢ ( 𝑛 = 𝐾 → ( 𝑀 ∥ 𝑛 ↔ 𝑀 ∥ 𝐾 ) ) |
| 203 |
|
breq2 |
⊢ ( 𝑛 = 𝐾 → ( 𝑁 ∥ 𝑛 ↔ 𝑁 ∥ 𝐾 ) ) |
| 204 |
202 203
|
anbi12d |
⊢ ( 𝑛 = 𝐾 → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ↔ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) |
| 205 |
201 204
|
anbi12d |
⊢ ( 𝑛 = 𝐾 → ( ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ↔ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) ) |
| 206 |
205
|
anbi2d |
⊢ ( 𝑛 = 𝐾 → ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) ) ) |
| 207 |
|
breq2 |
⊢ ( 𝑛 = 𝐾 → ( ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) ) |
| 208 |
206 207
|
imbi12d |
⊢ ( 𝑛 = 𝐾 → ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) ↔ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) ) ) |
| 209 |
194
|
breq1d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) ) |
| 210 |
209
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) ) |
| 211 |
185 210
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) |
| 212 |
208 211
|
vtoclg |
⊢ ( 𝐾 ∈ ℕ → ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) ) |
| 213 |
200 212
|
mpcom |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) |
| 214 |
213
|
ex |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) ) |
| 215 |
199 214
|
jca |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( abs ‘ ( 𝑀 · 𝑁 ) ) ∧ ( ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) ) ) |