Metamath Proof Explorer


Theorem negrebd

Description: The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses negidd.1 φA
negrebd.2 φA
Assertion negrebd φA

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 negrebd.2 φA
3 negreb AAA
4 1 3 syl φAA
5 2 4 mpbid φA