Metamath Proof Explorer


Theorem nelbOLD

Description: Obsolete version of nelb as of 3-Nov-2024. (Contributed by Thierry Arnoux, 20-Nov-2023) (Proof shortened by SN, 23-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nelbOLD ¬ABxBxA

Proof

Step Hyp Ref Expression
1 df-ne xA¬x=A
2 1 ralbii xBxAxB¬x=A
3 ralnex xB¬x=A¬xBx=A
4 2 3 bitri xBxA¬xBx=A
5 risset ABxBx=A
6 4 5 xchbinxr xBxA¬AB
7 6 bicomi ¬ABxBxA