Metamath Proof Explorer


Theorem nelb

Description: A definition of -. A e. B . (Contributed by Thierry Arnoux, 20-Nov-2023) (Proof shortened by SN, 23-Jan-2024) (Proof shortened by Wolf Lammen, 3-Nov-2024)

Ref Expression
Assertion nelb ¬ A B x B x A

Proof

Step Hyp Ref Expression
1 df-ne x A ¬ x = A
2 1 ralbii x B x A x B ¬ x = A
3 ralnex x B ¬ x = A ¬ x B x = A
4 2 3 bitr2i ¬ x B x = A x B x A
5 risset A B x B x = A
6 4 5 xchnxbir ¬ A B x B x A