Description: A definition of -. A e. B . (Contributed by Thierry Arnoux, 20-Nov-2023) (Proof shortened by SN, 23-Jan-2024) (Proof shortened by Wolf Lammen, 3-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | nelb | |- ( -. A e. B <-> A. x e. B x =/= A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne | |- ( x =/= A <-> -. x = A ) |
|
2 | 1 | ralbii | |- ( A. x e. B x =/= A <-> A. x e. B -. x = A ) |
3 | ralnex | |- ( A. x e. B -. x = A <-> -. E. x e. B x = A ) |
|
4 | 2 3 | bitr2i | |- ( -. E. x e. B x = A <-> A. x e. B x =/= A ) |
5 | risset | |- ( A e. B <-> E. x e. B x = A ) |
|
6 | 4 5 | xchnxbir | |- ( -. A e. B <-> A. x e. B x =/= A ) |