Metamath Proof Explorer


Theorem nelb

Description: A definition of -. A e. B . (Contributed by Thierry Arnoux, 20-Nov-2023) (Proof shortened by SN, 23-Jan-2024) (Proof shortened by Wolf Lammen, 3-Nov-2024)

Ref Expression
Assertion nelb ( ¬ 𝐴𝐵 ↔ ∀ 𝑥𝐵 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 df-ne ( 𝑥𝐴 ↔ ¬ 𝑥 = 𝐴 )
2 1 ralbii ( ∀ 𝑥𝐵 𝑥𝐴 ↔ ∀ 𝑥𝐵 ¬ 𝑥 = 𝐴 )
3 ralnex ( ∀ 𝑥𝐵 ¬ 𝑥 = 𝐴 ↔ ¬ ∃ 𝑥𝐵 𝑥 = 𝐴 )
4 2 3 bitr2i ( ¬ ∃ 𝑥𝐵 𝑥 = 𝐴 ↔ ∀ 𝑥𝐵 𝑥𝐴 )
5 risset ( 𝐴𝐵 ↔ ∃ 𝑥𝐵 𝑥 = 𝐴 )
6 4 5 xchnxbir ( ¬ 𝐴𝐵 ↔ ∀ 𝑥𝐵 𝑥𝐴 )