Metamath Proof Explorer


Theorem neldif

Description: Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994)

Ref Expression
Assertion neldif AB¬ABCAC

Proof

Step Hyp Ref Expression
1 eldif ABCAB¬AC
2 1 simplbi2 AB¬ACABC
3 2 con1d AB¬ABCAC
4 3 imp AB¬ABCAC