Metamath Proof Explorer


Theorem nelneq

Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997)

Ref Expression
Assertion nelneq AC¬BC¬A=B

Proof

Step Hyp Ref Expression
1 eleq1 A=BACBC
2 1 biimpcd ACA=BBC
3 2 con3dimp AC¬BC¬A=B