Metamath Proof Explorer


Theorem nelpr1

Description: If a class is not an element of an unordered pair, it is not the first listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses nelpr1.a φAV
nelpr1.n φ¬ABC
Assertion nelpr1 φAB

Proof

Step Hyp Ref Expression
1 nelpr1.a φAV
2 nelpr1.n φ¬ABC
3 animorrl φA=BA=BA=C
4 elprg AVABCA=BA=C
5 1 4 syl φABCA=BA=C
6 5 adantr φA=BABCA=BA=C
7 3 6 mpbird φA=BABC
8 2 7 mtand φ¬A=B
9 8 neqned φAB