Metamath Proof Explorer


Theorem nelpr2

Description: If a class is not an element of an unordered pair, it is not the second listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses nelpr2.a φAV
nelpr2.n φ¬ABC
Assertion nelpr2 φAC

Proof

Step Hyp Ref Expression
1 nelpr2.a φAV
2 nelpr2.n φ¬ABC
3 animorr φA=CA=BA=C
4 elprg AVABCA=BA=C
5 1 4 syl φABCA=BA=C
6 5 adantr φA=CABCA=BA=C
7 3 6 mpbird φA=CABC
8 2 7 mtand φ¬A=C
9 8 neqned φAC