Metamath Proof Explorer


Theorem nf1oconst

Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024)

Ref Expression
Assertion nf1oconst F:ABXAYAXY¬F:A1-1 ontoC

Proof

Step Hyp Ref Expression
1 nf1const F:ABXAYAXY¬F:A1-1C
2 1 orcd F:ABXAYAXY¬F:A1-1C¬F:AontoC
3 ianor ¬F:A1-1CF:AontoC¬F:A1-1C¬F:AontoC
4 df-f1o F:A1-1 ontoCF:A1-1CF:AontoC
5 3 4 xchnxbir ¬F:A1-1 ontoC¬F:A1-1C¬F:AontoC
6 2 5 sylibr F:ABXAYAXY¬F:A1-1 ontoC