Metamath Proof Explorer


Theorem nf3an

Description: If x is not free in ph , ps , and ch , then it is not free in ( ph /\ ps /\ ch ) . (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses nfan.1 xφ
nfan.2 xψ
nfan.3 xχ
Assertion nf3an xφψχ

Proof

Step Hyp Ref Expression
1 nfan.1 xφ
2 nfan.2 xψ
3 nfan.3 xχ
4 df-3an φψχφψχ
5 1 2 nfan xφψ
6 5 3 nfan xφψχ
7 4 6 nfxfr xφψχ