Metamath Proof Explorer


Theorem nfabdw

Description: Bound-variable hypothesis builder for a class abstraction. Version of nfabd with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024) (Proof shortened by Wolf Lammen, 23-Sep-2024)

Ref Expression
Hypotheses nfabdw.1 yφ
nfabdw.2 φxψ
Assertion nfabdw φ_xy|ψ

Proof

Step Hyp Ref Expression
1 nfabdw.1 yφ
2 nfabdw.2 φxψ
3 nfv zφ
4 df-clab zy|ψzyψ
5 sb6 zyψyy=zψ
6 4 5 bitri zy|ψyy=zψ
7 nfvd φxy=z
8 7 2 nfimd φxy=zψ
9 1 8 nfald φxyy=zψ
10 6 9 nfxfrd φxzy|ψ
11 3 10 nfcd φ_xy|ψ