Metamath Proof Explorer


Theorem nfald

Description: Deduction form of nfal . (Contributed by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 16-Oct-2021)

Ref Expression
Hypotheses nfald.1 yφ
nfald.2 φxψ
Assertion nfald φxyψ

Proof

Step Hyp Ref Expression
1 nfald.1 yφ
2 nfald.2 φxψ
3 19.12 xyψyxψ
4 2 nfrd φxψxψ
5 1 4 alimd φyxψyxψ
6 ax-11 yxψxyψ
7 3 5 6 syl56 φxyψxyψ
8 7 nfd φxyψ