Metamath Proof Explorer


Theorem nfald2

Description: Variation on nfald which adds the hypothesis that x and y are distinct in the inner subproof. (Contributed by Mario Carneiro, 8-Oct-2016) Usage of this theorem is discouraged because it depends on ax-13 . Use nfald instead. (New usage is discouraged.)

Ref Expression
Hypotheses nfald2.1 yφ
nfald2.2 φ¬xx=yxψ
Assertion nfald2 φxyψ

Proof

Step Hyp Ref Expression
1 nfald2.1 yφ
2 nfald2.2 φ¬xx=yxψ
3 nfnae y¬xx=y
4 1 3 nfan yφ¬xx=y
5 4 2 nfald φ¬xx=yxyψ
6 5 ex φ¬xx=yxyψ
7 nfa1 yyψ
8 biidd xx=yyψyψ
9 8 drnf1 xx=yxyψyyψ
10 7 9 mpbiri xx=yxyψ
11 6 10 pm2.61d2 φxyψ