Metamath Proof Explorer


Theorem nfan1c

Description: Variant of nfan and commuted form of nfan1 . (Contributed by BTernaryTau, 31-Jul-2025)

Ref Expression
Hypotheses nfan1c.1 x φ
nfan1c.2 φ x ψ
Assertion nfan1c x ψ φ

Proof

Step Hyp Ref Expression
1 nfan1c.1 x φ
2 nfan1c.2 φ x ψ
3 1 2 nfan1 x φ ψ
4 ancom φ ψ ψ φ
5 4 nfbii x φ ψ x ψ φ
6 3 5 mpbi x ψ φ