Metamath Proof Explorer


Theorem nfcd

Description: Deduce that a class A does not have x free in it. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses nfcd.1 yφ
nfcd.2 φxyA
Assertion nfcd φ_xA

Proof

Step Hyp Ref Expression
1 nfcd.1 yφ
2 nfcd.2 φxyA
3 1 2 alrimi φyxyA
4 df-nfc _xAyxyA
5 3 4 sylibr φ_xA