Metamath Proof Explorer


Theorem nfcriOLDOLD

Description: Obsolete version of nfcri as of 26-May-2024. (Contributed by Mario Carneiro, 11-Aug-2016) Avoid ax-10 , ax-11 . (Revised by Gino Giotto, 23-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis nfcrii.1 _xA
Assertion nfcriOLDOLD xyA

Proof

Step Hyp Ref Expression
1 nfcrii.1 _xA
2 eleq1w z=yzAyA
3 2 nfbidv z=yxzAxyA
4 df-nfc _xAzxzA
5 4 biimpi _xAzxzA
6 df-nf xzAxzAxzA
7 6 albii zxzAzxzAxzA
8 sp zxzAxzAxzAxzA
9 7 8 sylbi zxzAxzAxzA
10 1 5 9 mp2b xzAxzA
11 10 nfi xzA
12 3 11 chvarvv xyA