Metamath Proof Explorer


Theorem nfcxfrdf

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by NM, 19-Nov-2020)

Ref Expression
Hypotheses nfcxfrdf.0 xφ
nfcxfrdf.1 φA=B
nfcxfrdf.2 φ_xB
Assertion nfcxfrdf φ_xA

Proof

Step Hyp Ref Expression
1 nfcxfrdf.0 xφ
2 nfcxfrdf.1 φA=B
3 nfcxfrdf.2 φ_xB
4 1 2 nfceqdf φ_xA_xB
5 3 4 mpbird φ_xA