Metamath Proof Explorer


Theorem nfeudw

Description: Bound-variable hypothesis builder for the unique existential quantifier. Deduction version of nfeu . Version of nfeud with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 15-Feb-2013) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfeudw.1 yφ
nfeudw.2 φxψ
Assertion nfeudw φx∃!yψ

Proof

Step Hyp Ref Expression
1 nfeudw.1 yφ
2 nfeudw.2 φxψ
3 df-eu ∃!yψyψ*yψ
4 1 2 nfexd φxyψ
5 1 2 nfmodv φx*yψ
6 4 5 nfand φxyψ*yψ
7 3 6 nfxfrd φx∃!yψ