Metamath Proof Explorer


Theorem nfmodv

Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmod for a version without disjoint variable conditions but requiring ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by BJ, 28-Jan-2023)

Ref Expression
Hypotheses nfmodv.1 yφ
nfmodv.2 φxψ
Assertion nfmodv φx*yψ

Proof

Step Hyp Ref Expression
1 nfmodv.1 yφ
2 nfmodv.2 φxψ
3 df-mo *yψzyψy=z
4 nfv zφ
5 nfvd φxy=z
6 2 5 nfimd φxψy=z
7 1 6 nfald φxyψy=z
8 4 7 nfexd φxzyψy=z
9 3 8 nfxfrd φx*yψ