Metamath Proof Explorer
		
		
		
		Description:  If x is not free in ph and ps , then it is not free in
       ( ph -/\ ps ) .  (Contributed by Scott Fenton, 2-Jan-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | nfan.1 |  | 
					
						|  |  | nfan.2 |  | 
				
					|  | Assertion | nfnan |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfan.1 |  | 
						
							| 2 |  | nfan.2 |  | 
						
							| 3 |  | df-nan |  | 
						
							| 4 | 1 2 | nfan |  | 
						
							| 5 | 4 | nfn |  | 
						
							| 6 | 3 5 | nfxfr |  |