Metamath Proof Explorer


Theorem nfnan

Description: If x is not free in ph and ps , then it is not free in ( ph -/\ ps ) . (Contributed by Scott Fenton, 2-Jan-2018)

Ref Expression
Hypotheses nfan.1 x φ
nfan.2 x ψ
Assertion nfnan x φ ψ

Proof

Step Hyp Ref Expression
1 nfan.1 x φ
2 nfan.2 x ψ
3 df-nan φ ψ ¬ φ ψ
4 1 2 nfan x φ ψ
5 4 nfn x ¬ φ ψ
6 3 5 nfxfr x φ ψ