Metamath Proof Explorer


Theorem nfnan

Description: If x is not free in ph and ps , then it is not free in ( ph -/\ ps ) . (Contributed by Scott Fenton, 2-Jan-2018)

Ref Expression
Hypotheses nfan.1
|- F/ x ph
nfan.2
|- F/ x ps
Assertion nfnan
|- F/ x ( ph -/\ ps )

Proof

Step Hyp Ref Expression
1 nfan.1
 |-  F/ x ph
2 nfan.2
 |-  F/ x ps
3 df-nan
 |-  ( ( ph -/\ ps ) <-> -. ( ph /\ ps ) )
4 1 2 nfan
 |-  F/ x ( ph /\ ps )
5 4 nfn
 |-  F/ x -. ( ph /\ ps )
6 3 5 nfxfr
 |-  F/ x ( ph -/\ ps )