Description: If x is not free in ph and ps , then it is not free in ( ph -/\ ps ) . (Contributed by Scott Fenton, 2-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfan.1 | |- F/ x ph | |
| nfan.2 | |- F/ x ps | ||
| Assertion | nfnan | |- F/ x ( ph -/\ ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfan.1 | |- F/ x ph | |
| 2 | nfan.2 | |- F/ x ps | |
| 3 | df-nan | |- ( ( ph -/\ ps ) <-> -. ( ph /\ ps ) ) | |
| 4 | 1 2 | nfan | |- F/ x ( ph /\ ps ) | 
| 5 | 4 | nfn | |- F/ x -. ( ph /\ ps ) | 
| 6 | 3 5 | nfxfr | |- F/ x ( ph -/\ ps ) |