Description: If x is not free in ph and ps , then it is not free in ( ph -/\ ps ) . (Contributed by Scott Fenton, 2-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfan.1 | |- F/ x ph |
|
nfan.2 | |- F/ x ps |
||
Assertion | nfnan | |- F/ x ( ph -/\ ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfan.1 | |- F/ x ph |
|
2 | nfan.2 | |- F/ x ps |
|
3 | df-nan | |- ( ( ph -/\ ps ) <-> -. ( ph /\ ps ) ) |
|
4 | 1 2 | nfan | |- F/ x ( ph /\ ps ) |
5 | 4 | nfn | |- F/ x -. ( ph /\ ps ) |
6 | 3 5 | nfxfr | |- F/ x ( ph -/\ ps ) |