Metamath Proof Explorer
		
		
		
		Description:  If x is not free in ph and ps , then it is not free in
       ( ph -/\ ps ) .  (Contributed by Scott Fenton, 2-Jan-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | nfan.1 | ⊢ Ⅎ 𝑥 𝜑 | 
					
						|  |  | nfan.2 | ⊢ Ⅎ 𝑥 𝜓 | 
				
					|  | Assertion | nfnan | ⊢  Ⅎ 𝑥 ( 𝜑  ⊼  𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfan.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | nfan.2 | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 3 |  | df-nan | ⊢ ( ( 𝜑  ⊼  𝜓 )  ↔  ¬  ( 𝜑  ∧  𝜓 ) ) | 
						
							| 4 | 1 2 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝜓 ) | 
						
							| 5 | 4 | nfn | ⊢ Ⅎ 𝑥 ¬  ( 𝜑  ∧  𝜓 ) | 
						
							| 6 | 3 5 | nfxfr | ⊢ Ⅎ 𝑥 ( 𝜑  ⊼  𝜓 ) |